Hyperbolic Geometry and the Hillam–Thron Theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic geometry and the Hillam-Thron theorem

Every open ball within R∞ has an associated hyperbolic metric and Möbius transformations act as hyperbolic isometries from one ball to another. The Hillam-Thron Theorem is concerned with images of balls under Möbius transformation, yet existing proofs of the theorem do not make use of hyperbolic geometry. We exploit hyperbolic geometry in proving a generalisation of the Hillam-Thron Theorem and...

متن کامل

Hyperbolic Geometry, Nehari’s Theorem, Electric Circuits, and Analog Signal Processing

Underlying many of the current mathematical opportunities in digital signal processing are unsolved analog signal processing problems. For instance, digital signals for communication or sensing must map into an analog format for transmission through a physical layer. In this layer we meet a canonical example of analog signal processing: the electrical engineer’s impedance matching problem. Impe...

متن کامل

The Hyperbolic Menelaus Theorem in The Poincaré Disc Model of Hyperbolic Geometry

In this note, we present the hyperbolic Menelaus theorem in the Poincaré disc of hyperbolic geometry. 2000 Mathematical Subject Classi…cation: 30F45, 20N99, 51B10, 51M10 Keywords and phrases: hyperbolic geometry, hyperbolic triangle, gyrovector 1. Introduction Hyperbolic Geometry appeared in the …rst half of the 19 century as an attempt to understand Euclid’s axiomatic basis of Geometry. It is ...

متن کامل

A New Proof of Menelaus’s Theorem of Hyperbolic Quadrilaterals in the Poincaré Model of Hyperbolic Geometry

In this study, we present a proof of the Menelaus theorem for quadrilaterals in hyperbolic geometry, and a proof for the transversal theorem for triangles.

متن کامل

Trigonometric Proof of Steiner-lehmus Theorem in Hyperbolic Geometry

In this note, we present a short trigonometric proof to the Steiner Lehmus Theorem in hyperbolic geometry. 2000 Mathematics Subject Classification: 30F45, 20N99, 51B10, 51M10

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometriae Dedicata

سال: 2006

ISSN: 0046-5755,1572-9168

DOI: 10.1007/s10711-006-9053-4